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Preface 

The California Energy Commission’s Public Interest Energy Research (PIER) Program supports 
public interest energy research and development that will help improve the quality of life in 
California by bringing environmentally safe, affordable, and reliable energy services and 
products to the marketplace. 

The PIER Program conducts public interest research, development, and demonstration (RD&D) 
projects to benefit California’s electricity and natural gas ratepayers. The PIER Program strives 
to conduct the most promising public interest energy research by partnering with RD&D 
entities, including individuals, businesses, utilities, and public or private research institutions. 

PIER funding efforts focus on the following RD&D program areas: 

• Buildings End-Use Energy Efficiency 
• Energy-Related Environmental Research 
• Energy Systems Integration  
• Environmentally Preferred Advanced Generation 
• Industrial/Agricultural/Water End-Use Energy Efficiency 
• Renewable Energy Technologies 
• Transportation 

In 2003, the California Energy Commission’s PIER Program established the California Climate 
Change Center to document climate change research relevant to the states. This center is a 
virtual organization with core research activities at Scripps Institution of Oceanography and the 
University of California, Berkeley, complemented by efforts at other research institutions. 
Priority research areas defined in PIER’s five-year Climate Change Research Plan are: 
monitoring, analysis, and modeling of climate; analysis of options to reduce greenhouse gas 
emissions; assessment of physical impacts and of adaptation strategies; and analysis of the 
economic consequences of both climate change impacts and the efforts designed to reduce 
emissions. 

The California Climate Change Center Report Series details ongoing center-sponsored 
research. As interim project results, the information contained in these reports may change; 
authors should be contacted for the most recent project results. By providing ready access to 
this timely research, the center seeks to inform the public and expand dissemination of climate 
change information, thereby leveraging collaborative efforts and increasing the benefits of this 
research to California’s citizens, environment, and economy. 

For more information on the PIER Program, please visit the Energy Commission’s website 
www.energy.ca.gov/pier/ or contract the Energy Commission at (916) 654-5164. 
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Abstract 

 

Using county-level data from the United States Department of Agriculture’s Census of 
Agriculture, this study evaluates the effect of weather and climate on agricultural profits in the 
State of California. The approach is to estimate revenue less production cost per acre as a 
function of land characteristics, weather realizations, and climate. This model is then used to 
evaluate the effect of two scenarios of climate change for the California over the coming 
century. Generally, we find that climate change does not have a negative effect on agricultural 
profits. There are significant caveats to this result, such as keeping water supply and farm prices 
constant. 
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1.0 Introduction 
California is at the forefront of states and even countries in having legislation on the books 
mandating the reduction of greenhouse gas emissions by a specified amount for specific dates. 
One reason for this aggressiveness is the perceived vulnerability of the state to climate change. 
As one example, climate change threatens to disrupt the state’s precious freshwater supply, 
which relies heavily on snowfall and snowmelt from the Sierra Nevada mountains. Climate 
change also threatens one of the state’s most important industries: agriculture. 

This paper addresses the question of how agriculture in the state may be affected by a change in 
climate. To answer this question, we look at two factors influencing farm profits: (1) how farm 
profit differs from one county to another in the state, inferring the effect climate has on those 
differences; (2) how farm profit differs for a county from one year to the next, as weather turns 
out to be different that expected. Statistically combining these two dimensions of the problem 
allows us to infer how climate and weather affect profits and, in turn, how a changed California 
climate may affect agricultural profits. 

We then use our statistical model, estimated on historic data, to forecast agricultural profits in 
the state under two scenarios of global climate change projected down to the state level: one 
business-as-usual (A2) and the other a more moderate scenario (B1). These scenarios were 
developed for the Intergovernmental Panel on Climate Change (IPCC) and are widely used. 

Our qualified conclusion is that agricultural profits would appear to be positively affected by 
climate change, though specific crops may be very negatively affected. The crops most 
negatively affected are table grapes and some citrus. 

In the next sections we develop our model and discuss data sources. We then turn to our 
results. 

2.0 Background 
A number of authors consider the effect of climate change on agriculture. Early work (i.e., from 
the early 1990s) focused on process models. Adams (1989), Adams et al. (1990), and Rosenzweig 
and Parry (1994) are prominent examples of the use of agricultural process models (including 
crop growth models) to measure the effect on crop yields of climate change. These models are 
typically physiological with limited scope for endogenous farmer behavioral response to 
climate change. Typically, adaptation and adjustment are absent or exogenous. 

Some crop growth models allow a certain amount of farmer adaptation to climate change. For 
instance, Kaiser et al. (1993) use a simulation model to forecast a century of effects from a 
gradual change in the climate. Their model assumes farmers choose which variety of crop 
would have done best in the previous (simulated) decade. In this way, some adaptation over 
time is represented in their model. This results in considerably less loss from a doubling of 
carbon dioxide concentrations (Schimmelpfennig et al. 1996). 

 

Hansen (1991) suggests that crop growth models (which must enumerate substitution 
possibilities) may miss some of the substitution opportunities available to farmers. He estimates 
a cross-sectional model of corn production in the United States where expected climate (July 
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mean temperature and precipitation) as well as realized weather are used to explain cross-
sectional variations in corn yield. His results for a temperature increase are mixed, showing 
yield increases in some climates and yield decreases in others. 

Similar information can be derived statistically from observations on agricultural output. Perrin 
and Smith (1990) investigate the effect of weather on several crops in North Carolina and then 
use results of climate models to estimate the effect of climate change on crops. Hansen (1991) 
estimates the effect of weather and climate on corn yield and then postulates the effect of a 
change in climate. Some studies in agricultural economics and agronomy focus more directly on 
the weather effect (Kaylen et al. 1992; Thompson 1986; Wescott 1989; Kaufmann and Snell 1997). 
These models approach the problem after the production decisions have been made, only 
considering the effect of actual weather realizations on yield. Typically the weather data is 
transformed into some measure of deviation from expected weather. The underlying idea is that 
the effect of normal weather (represented by climatic expectations) is captured in the farmer’s 
cropping practices, but that unusual weather will have an impact of yield. Of particular note to 
California is the recent work of Lobell et al. (2007), relating climate to yields of a number of 
specific California-relevant crops (using data from California). 

Mendelsohn et al. (1993, 1994) introduced the “Ricardian” approach to econometrically 
estimating the effect of climate on farm output (though this approach can be traced back to 
Johnson and Haigh 1970). The central idea of Mendelsohn et al. (1993, 1994) is to measure the 
differences in land values across the United States, inferring that land value differences are due 
to endowed soil quality and climate. This allows the authors to infer the value of different 
climates. Using this approach, they infer a very small effect (possibly positive, possibly 
negative) on U.S. agriculture from climate change. Schlenker et al. (2005, 2006) have performed 
a similar analysis on a subset of the United States, focusing on non-irrigated land. In recent 
work, Schlenker et al. (2007) have focused on sub-county data in California producing 
interesting results on long-run effects of climate on land values and water availability. 

As Schlenker et al. (2005) argue, irrigation is an important issue in the West. But it is not as 
simple as one might expect. McFadden (1984) focuses on how a farmer (or other agent) may 
change behavior based on uncertainty about climate change (or even weather variability). In 
essence, if the farmer feels a possibility of climate change exists, he may adopt more robust 
practices (such as irrigation) that perform relatively well over a range of weather or climates, 
sacrificing a bit relative to the case of perfect knowledge about the weather. Fisher and Rubio 
(1997) similarly find that water storage investments should increase as the variance of 
precipitation increases. 

The main appeal of the Ricardian approach is that if land markets are operating properly, prices 
will reflect the present discounted value of land rents into the infinite future. Thus the hedonic 
approach promises an estimate of the effect of climate change that accounts for the adaptation 
behavior that undermines the earlier work based on process models. However, to successfully 
implement the hedonic approach, it is necessary to obtain econometrically consistent estimates 
of the independent influence of climate on land values, and this requires that all unobserved 
determinants of land values are uncorrelated with (orthogonal to) climate. Deschênes and 
Greenstone (2007) demonstrate that temperature and precipitation means covary with soil 
characteristics, population density, per capita income, and latitude. Moreover, Schlenker, 
Hanemann, and Fisher (2005) show that the availability of irrigated water also covaries with 
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climate (Schlenker, Hanemann, and Fisher 2005). This means that functional form assumptions 
are important in the hedonic approach and may imply that unobserved variables are likely to 
covary with climate. Further, recent research has found that cross-sectional hedonic equations 
appear to be plagued by omitted variables bias in a variety of settings (Black 1999; Black and 
Kneisner 2003; Chay and Greenstone 2005; Greenstone and Gallagher 2005). Overall, it may be 
reasonable to assume that the cross-sectional hedonic approach confounds the effect of climate 
with other factors (e.g., soil quality).  

Kelly et al. (2005) extend the Ricardian approach by distinguishing between expected weather 
(climate) and the actual weather than is realized during a growing season. Expected weather 
determines crop choice and similar decisions; what weather is actually realized determines 
actual profits. They thus provide one of the first analyses of how total farm profits are affected 
by both climate and by weather shocks (deviations of weather from what is expected). Rather 
than examine a single time-slice of farm land values (a cross-section), they examine a pooled 
time-series cross-section of thirty years of farm profit data at the county level, though just for 
the Midwest of the United States (not the entire country). Their results are consistent with those 
of Mendelsohn et al. (1993, 1994) regarding the long-run cost of climate change. But they also 
explore how increased extreme weather events may increase the cost of climate change, over 
and above the costs associated with a change in the mean weather.  

One problem with the Kelly et al. (2005) approach (in addition to its only covering the Midwest) 
is the treatment of unobserved farm characteristics that can play an important role in 
determining profits. Deschênes and Greenstone (2007) address this and other issues in their use 
of the profit function approach to measuring the effect of climate and weather. For one thing, 
their analysis involves the entire United States as well as individual states. In addition, they 
cleverly include climate as a county-level fixed effect, which permits them to focus on the effect 
of weather on farm profits. Although this provides a better estimate of profits, it is not possible 
to disentangle the effect of climate from other unobserved determinants of profits, since all are 
included in the fixed effect. Thus it is difficult to use their model to evaluate the effect of a 
counterfactual climate change. They suggest that focusing only on weather provides a 
conservative estimate of the effect of climate on profits. 

3.0 Methodology 
Our approach is to use county-level data in California over a twenty year period to understand 
how climate and weather affect farm profits and crop yields. We then use this estimated 
relationship to simulate how a changed climate might affect farm profits and yields. 

3.1. Introducing Weather 
The canonical estimating equation involving weather (W) but not climate is of the form: 

 

where the indices c and t denote county and year, respectively, and k represents different 
measures of weather (such as annual average temperature or annual total precipitation). In the 
models of agricultural profits the dependent variable is expressed in dollars per acre of 



Draft 

4 

farmland, while in the models for crops it is expressed in value of production per acre planted. 
In both cases nominal dollars are converted to 2006 dollars. The key variables of interest in 
Equation 1 are the W variables for different k’s, which represent degree-days and precipitation 
in a county c and year t. As mentioned, the “k” index simply denotes the various measures of 
degree-days and precipitation we control for (e.g., winter degree-days, spring degree-days, 
etc).1 In different versions of (1), we examine weather variables from both a seasonal perspective 
and an annual perspective. 

Equation 1 also includes a full set of county fixed effects, αc. The appeal of including the county 
fixed effects is that they absorb all unobserved county-specific time invariant determinants of 
the dependent variable. For example, to the extent that agricultural soil quality is constant over 
time, the county fixed effects will account for differences in soil quality across counties. As such, 
the inclusion of county fixed effects will help mitigate the problem of omitted variables bias that 
has plagued some of the previous literature. Variants of this approach have been used in 
Deschênes and Greenstone (2007) and Schlenker and Roberts (2008). 

The model above also includes a full set of year fixed effects, λt, that control for annual 
differences in the dependent variable that are common across counties. In particular the year 
fixed effects will capture the impact of changes in commodity prices on profits or value of 
production. An alternative is to directly control for prices, like in Kelly, Kolstad, and Mitchell 
(2005). The variables in the vector Xct are the soil quality variables we described earlier. These 
variable change a little (but not much) from one year to another. Finally, the last term in 
Equation 1, εct, is a statistical error term. 

3.2. Controlling for Climate 
In the spirit of Kelly, Kolstad, and Mitchell (2005), we augment Equation 1 to include proxies for 
farmer’s expectations about weather. Viewing the climate as average weather, or more 
specifically, the distribution of weather, we control for expected climate. While expectations are 
not directly observed, we assume that expectations are derived from observing past weather. 
Specifically, we calculate the 30-year running average of the weather variables and include 
them in Equation 1, in addition to the realized degree-days and precipitation for a given year. 
Given the inclusion of county fixed-effects in Equation 1, the statistical identification of the 
augmented equation requires that climates are ”changing” in the sense that the 30-year running 
averages must be time-varying (otherwise these variables would be perfectly collinear with the 
county fixed effects). Figure 1 reports the trends in the annual realization of the degree-days 
variable and its 30-year running average (starting in 1950). There are two key points: Average 
annual degree-days exhibit important year-to-year variation, ranging from 2,300 to 2,900. This 
variation will play a key role in the statistical identification of Equations 1 and 2 below. On the 
other hand, the 30-year running average of degree-days evolves very smoothly over time, as 
was expected. Its time-series pattern shows an essentially linear increase between 1950 and 2005 

                                                
1 We also considered models where degree-days and precipitation are modeled quadratically rather than 
linearly.  These results were generally similar, although the statistical precision was greatly reduced. 
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around a mean of 2,500.2 This pattern foreshadows the challenges in statistically identifying the 
“augmented” models of the form: 

 

Where  denotes the average of Wkct over the period τ-30 to τ-1. This approach follows from 
Kelly, Kolstad, and Mitchell (2005). 

3.3. Estimation 
There are further issues about Equations 1 and 2 that require attention. First, it is appropriate to 
estimate the equations using weights. Since the dependent variables are expressed in dollars per 
acres of farmland (or acres planted), there are two reasons to weight the models by the square 
root of acres of farmland (acres planted). First, the estimates of the value of farmland from 
counties with large agricultural operations will be more precise than the estimates from 
counties with small operations, and this weight corrects for the heteroskedasticity associated 
with the differences in precision. Second, the weighted mean of the dependent variables will 
equal to the mean value of farmland per acre in California. 

It is likely that the error terms are serially correlated over time. To account for this, we 
presented ”clustered” standard errors, where the clusters are defined by counties. This allows 
for arbitrary serial correlation over time within counties. 

3.4. Calculation of Impacts 
 Once the gradients of the profits and yield functions are estimated, it is relatively 
straightforward to project the impacts of climate change. We simply combine the fixed-effect 
regressions estimates with the projected differences in degree-days and precipitations reported 
in Table 1b. 

 

                                                
2 We note that the change in “climate” (i.e., the 30-year running average of degree-days) is not uniform 
across counties. On average, our measure of climate has increased by about 100 degree-days between 
1950 and 2002. However some counties experienced large increases—for example Fresno and Imperial 
counties, where historical degree-days increased by 500 degree-days between 1950 and 2002. 
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Figure 1. Annual realization of degree-days (8°C–32°C) and its 30-year running average, averaged across 
California counties,  
1950–2005 
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Table 1a. County-level summary statistics on weather realizations and projections of future climates in California  

 
Notes: Predictions are from the National Center for Atmospheric Research’s Community Climate System Model, version 3 (CCSM3), under IPCC 
Special Report on Emissions Scenarios (SRES) scenarios B1 and A2. Calculations are based on daily record data for the period 1950–2005 and 
2010–2099. Winter is defined as the first quarter of the year; the other seasons are correspondingly defined. Degree-Days 8-32 denotes Degree-
Days 8°C–32°C and Degree-Days 32+ denotes Degree-Days 32°C+. 
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Table 1b. County-level summary statistics on predicted changes in climate in California 

 
Notes: Predictions are from the CCSM3 model, under scenarios B1 and A2. Calculations are based on daily record data for the period 1950–2005, 
and 2010–2099. Predicted changes are obtained by taking difference between the 1950–2005 averages in realized degree-days and precipitation 
reported in Table 1a and the predicted levels of degree-days and precipitation reported in Table 1a. Degree-Days 8-32 denotes Degree-Days 8°C–
32°C and Degree-Days 32+ denotes Degree-Days 32°C+. 
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We first present the calculation for the models that only control for realized weather (e.g., 
Equation 1). For a given climate change model/scenario, the impact for county c is given by: 

 

Where ΔWkc is the predicted change in weather variable k in county c. These changes are specific 
to a climate change model, scenario, and horizon (i.e., short-run, medium-run, long-run). The 
variables ACRESc represent the average acres of farmland (or acres planted) during the sample 
period in county c. We need to “reweight” the calculations since the regression models are 
profits per acre (and value of production per acre). Finally, to obtain the impact for the state as a 
whole, we simply sum the county-specific impacts (IMPACTc) across counties. 

4.0 Data Sources 

4.1. Farm Revenues, Expenditures, and Profits 
The data on agricultural finances are from the 1969, 1974, 1987, 1992, 1997, and 2002 Censuses of 
Agriculture. Data from the Census of Agriculture are available for 1978 and 1982, as well as for 
years prior to 1969. However, these data are not comparable since the production expenditure 
variables are not different than in the years we used. All farms and ranches from which $1,000 
or more of agricultural products are produced and sold, or normally would have been sold, 
during the census year are required to submit a census form. For confidentiality reasons, 
counties are the finest geographic unit of observation that is publicly available in the Census of 
Agriculture.3 

From these data we construct a variable for county-level agricultural profits per acre of 
farmland. The numerator is constructed as the difference between the market value of 
agricultural products sold and total production expenses across all farms in a county. 
Production expenses exclude the value of or return from land. The denominator includes acres 
devoted to crops, pasture, and grazing. The revenues component measures the gross market 
value before taxes of all agricultural products sold or removed from the farm. It excludes 
income from participation in federal farm programs,4 labor earnings off the farm (e.g., income 
from harvesting a different field), or nonfarm sources. Thus, it is a measure of the revenue 
produced with the land. 

Total production expenses are the measure of costs. They include expenditures by landowners, 
contractors, and partners in the operation of the farm business. This covers all variable costs 
(e.g., seeds, labor, and agricultural chemicals/fertilizers). It also includes measures of interest 

                                                
3 We attempted to develop data at the ZIP/Postal code level but the ZIP code is for the mailing address of 
the farm, which may be in a totally different location from the farm.  Furthermore, the United States 
Department of Agriculture has a policy of not releasing cost and value figures at the sub-county level, 
even if requested to do so on a reimbursable basis. Consequently, county-level data is the smallest 
geographic unit available. 
4 An exception is that it includes receipts from placing commodities in the Commodity Credit 
Corporation loan program.  These receipts differ from other federal payments because farmers receive 
them in exchange for products. 
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paid on debts and the amount spent on repair and maintenance of buildings, motor vehicles, 
and farm equipment used for farm business. Its main limitation is that it does not account for 
the rental rate of the portion of the capital stock that is not secured by a loan, so it is only a 
partial measure of farms’ cost of capital.5 Just as with the revenue variable, the measure of 
expenses is limited to those that are incurred in the operation of the farm so, for example, any 
expenses associated with contract work for other farms is excluded.6 

4.2. Crop Production and Yields  
Annual county-level data on production, value of production, and acres planted for the period 
1980–2005 were taken from the County Agricultural Commissioners Data.7 This summary, 
which is published annually, is based on the annual Crop Reports compiled by the California 
County Agricultural Commissioners. These reports provide the most detailed annual data 
available on agricultural production by county. Basic data collected by the Agricultural 
Commissioners and their staffs are compiled from many sources. Sources vary from county to 
county. Examples of data sources include growers' surveys, regulatory and inspection data, 
shipment data, and industry assessments. Price data reflect the average price received by 
growers, except fresh market fruits and vegetables, which are on a packed and ready-to-ship 
basis.  

4.3. Soil Quality Data 
Like most previous analyses, we rely on the National Resource Inventory (NRI) for our 
measures of soil quality and characteristics. The NRI is a massive survey of soil samples and 
land characteristics that is conducted in census years. We follow the convention in the literature 
and use a number of soil quality variables as controls in the equations for profits and yields, 
including measures of susceptibility to floods, soil erosion (K-Factor), slope length, sand 
content, irrigation, and permeability. County-level measures are calculated as weighted 
averages across sites used for agriculture, where the weight is the amount of land the sample 
represents in the county. Although these data provide a rich portrait of soil quality, we suspect 
that they are not comprehensive. To this end, we consider models that include county fixed 
effects to capture these effects. 

4.4. Historical Weather Data 
The weather data are drawn from the National Climatic Data Center (NCDC) Summary of the 
Day Data (File TD-3200). The key variables for our analysis are the daily maximum and 

                                                
5 In particular, interest payments are the only measure of the rental cost of capital in the censuses. Thus, 
our measure understates the cost of capital by not accounting for the opportunity cost of the portion of 
the capital stock that is not leveraged.  Further, our measure of agricultural profits does not account for 
labor costs that are not compensated with wages (e.g., the labor provided by the farm owner). 
6 The censuses contain separate variables for subcategories of revenue (e.g., revenues due to crops and 
dairy sales), but expenditures are not reported separately for these different types of operations.  
Consequently, we cannot provide separate measures of profits by these categories and instead focus on 
total agriculture profits. 
7 National Agriculture Statistics Service, County Agricultural Commissioners’ Data. 
www.nass.usda.gov/Statistics_by_State/California/Publications/AgComm/indexcac.asp  
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minimum temperature, as well as the total daily precipitation for the period 1920–2005. To 
ensure the accuracy of the weather readings, we developed a weather station selection rule. 
Specifically, we dropped all weather stations that were not operating consecutively for a full 
year, though we allow stations to enter and exit the sample over time. The acceptable station-
level data is then aggregated at the county level by taking an inverse-distance weighted average 
of all grid points that lie within 200 kilometers (km) of each county’s centroid.  

With this data at hand, we now have a complete daily time-series starting January 1, 1920, and 
ending December 31, 2005, for every county in California, with valid measurements for daily 
minimum and maximum temperature, and total precipitations. We use the daily data to 
construct measures of ”exposure” that follow from the agronomic literature. Agronomists have 
shown that plant growth depends on the cumulative exposure to heat and precipitation during 
the growing season. As such, monthly average temperatures may be poor predictors of 
agricultural outputs since they do not capture nonlinearities, and the differential impact of 
exposure across the temperature distribution. 

The standard agronomic approach for modeling temperature is to convert daily temperatures 
into degree-days, which correspond to heating units (Hodges 1991; Grierson 2002). It is likely 
that the effect of heat accumulation is nonlinear since temperature must be above a threshold 
for plants to absorb heat and below a ceiling as plants cannot absorb extra heat when 
temperature is too high. These thresholds or bases vary across crops, but we follow Ritchie and 
NeSmith’s (1991) suggested characterization for the entire agricultural sector and use a base of 
8° Celsius (C) (46°F) and a ceiling of 32°C (90°F). Specifically, the degree-days variable is 
calculated so that a day with a mean temperature: below 8°C contributes 0 degree-days; days 
between 8°C and 32°C contributes the number of degrees C above 8 degree-days; above 32°C 
contributes 24 degree-days. 

Since California’s climate allows certain plants to grow across the whole year, we control for 
heat exposure and precipitation during the course of the full calendar year. Rather than 
focusing on the ”traditional” growing season (April to September), we construct measure of 
degree-days for the four quarters of the year (termed winter, spring, summer, and fall) and use 
these variables in some of our models for agricultural profits and yields. We also construct 
similar measures for total precipitations by season. The advantage of having separate variables 
for each season rather than cumulative ones is that it will track better the specific timing of 
planting and harvesting of various crops. For example, broccoli is grown all year round while 
navel oranges are grown from January to June. To ease comparisons with other studies, we also 
consider annual measures of degree-days and precipitation. 

Ritchie and NeSmith (1991) also discuss the possibility of a temperature threshold at 34°C, 
above which increases in temperature are harmful. In addition, Schlenker and Roberts (2008) 
also propose other definitions of ”harmful” degree-days. We consider this possibility by 
including in all models a variable for degree-days of base 32°C, without an upper limit. This 
variable will in effect allow the effect of degree-days on agricultural output to vary depending 
on its location in the temperature distribution. 

4.5. Climate Change Predictions 
In this report we estimate the effect of climate change on agriculture using climate change 
predictions from the National Center for Atmospheric Research (NCAR) Community Climate 
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System Model (CCSM), based on scenarios B1 and A2. These IPCC scenarios are derived from 
”storylines” that describe the relationships between the forces driving greenhouse gas and 
aerosol emissions and their evolution during the twenty-first century for large world regions 
and globally. Each storyline represents different demographic, social, economic, technological, 
and environmental developments that diverge in increasingly irreversible ways. The A2 
storyline and scenario family is characterized with a very heterogeneous world with 
continuously increasing global population and regionally oriented economic growth (“business 
as usual”). The B1 storyline and scenario family features a convergent world with the same 
global population as in the A1 storyline but with rapid changes in economic structures toward a 
service and information economy, with reductions in material intensity, and the introduction of 
clean and resource-efficient technologies. As such, temperature increases in the B1 scenario are 
more moderate than in the A2 scenario. 

The model’s prediction are then adjusted for bias correction and are spatially downscaled 
(BCSD) to the level of California counties.8 The models provide us with daily minimum and 
maximum temperature and precipitation predictions at several grid points throughout 
California for the period 1950–2099. The grid point data produced by the CCSM model are 
assigned to counties by taking an inverse-distance weighted average of all grid points that lie 
within 100 km of each county’s centroid. From the daily prediction data we can compute the 
same degree-day variables as we construct and analyze using the historical record period 1950–
2005. The description of these variables is discussed above. 

4.6. Summary Statistics 
Table 1 reports the averages (across counties and years) of the seasonal degree-days and 
precipitation variables. For convenience, the annual averages are also reported. The “Actual” 
column shows the 1950–2005 averages of each of the listed variables for the 58 counties in 
California. Ideally these would be computed as weighted averages, where the weight would be 
given by acres of farmland. Unfortunately, acreage data are not available for all years, so the 
statistics reported are simply unweighted. The entries reveal that on average, the typical 
California county receives 71 centimeters (cm) of rain during the course of the year and about 
2,600 degree-days between 8°C and 32°C. In addition, the typical county faces 1.4 potential 
harmful degree-days (those defined with base 32°C), although there is variation in this level 
across counties. Clearly, the distribution of degree-days and rainfall is not uniform across the 
year: Most of the rainfall (e.g., 61 out of 71 cm) occurs in the winter and fall months, and half of 
the degree-days are in the summer months. 

The “Projected” columns show the values for the degree-days and precipitation variables 
associated with the CCSM model, under scenarios B1 and A2. Averages are reported for three 
time periods: the short-run (2010–2039), the medium-run (2040–2069), and the long-run (2070–
2099). The entries are simple averages over the 58 counties in California, over the 30 years in 
each period. As stated before, the scenarios vary in their predictions of future climates.  

According to the B1 scenario, the data shows that the average county in California is projected 
to receive an additional four hundred 8°C–32°C degree-days and 1.7 additional centimeters of 

                                                
8 Estimates are reported at: 
http://tenaya.ucsd.edu/wawonat/ipcc4/downscaled/bcsd/sresa2/daily/cnrmcm3/. 
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rain during the course of the typical year by the end of the century. The predictions under 
scenario A2 are more marked: The model predicts that the typical county will receive 3,600 
degree-days (8°C–32°C), 16 degree-days (base 32°C), and 65 centimeters over the course of a 
year, on average, between 2070 and 2099. The increase in 8°C–32°C degree-days is large, 
representing almost a 40% increase relative to the 1950–2005 baseline. The reduction in annual 
precipitation is of smaller magnitude, at 8%. 

It is worthwhile to emphasize that the changes over time are not monotonic. For example, the 
B1 scenario initially is associated with reduction in annual precipitations (e.g., in the 2010–2039 
period), followed by an increase in the following years. Figure 1 shows the annual averages of 
precipitations and degree-days over the 2010–2099 period for both scenarios.9 Figure 2a shows 
the trends in annual degree-days (8°C–32°C) for CCSM B1 and A2. As indicated in Table 1, A2 
is associated with larger increases in temperature. However, most of the disparity in the 
predictions occurs beyond 2050. A similar pattern is observed in Figure 2b, which shows trends 
in annual degree-days exceeding 32°C. Finally, the patterns for annual precipitation, showed in 
Figure 2c, are much noisier, and as such it is difficult to see any significant difference between 
the scenarios.  

Returning to Table 1, it is also informative to consider seasonal disparities in the climate change 
predictions. Both models show an increase in degree-days in all seasons, with the largest 
proportionate increases typical in the fall and winter months (although in absolute terms the 
summer month will gain the most degree-days). Again, the patterns for seasonal precipitations 
are less clear-cut. The A2 scenario predicts less precipitation in all seasons by the end of the 
century, with the largest proportionate declines in the summer months. The corresponding 
long-run prediction of the B1 scenario is a small increase in seasonal rainfall, except during the 
summer months. To the extent that various crops are more or less dependent on seasonal 
degree-days or rainfall, the impact of climate change on California’s agriculture is likely to be 
very heterogeneous across crops. 

 

                                                
9 For better clarity, the annual averages are smoothed using a moving average. 
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Figure 2a. Predicted annual degree-days (8°C–32°C), average across California counties, 2010–2099, scenarios B1 
and A2 
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Figure 2b. Predicted annual degree-days (32°C+), average across California counties, 2010–2099, scenarios B1 
and A2 
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Figure 2c. Predicted annual precipitation, average across California counties, 2010–2099, scenarios B1 and A2 
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Figures 2a and 2b offer some information about the geographical distribution of the predicted 
changes in California’s climate. Each figure shows the percentage change (relative to the 1950–
2005 baseline) in annual degree-days (8°C–32°C) and precipitation for each county in California. 
The changes are calculated off the average long-run predictions (i.e., 2070–2099) for both 
scenarios. Figure 3a pertains to degree-days, while Figure 3b pertains to annual precipitations. 
It is apparent in both figures that climate change will not be uniform across counties. For annual 
degree-days, most counties will experience a 25% to 50% increase (CCSM3-A2). Interestingly, 
the five leading counties in terms of agricultural profits (Fresno, Monterey, Tulare, Kern, and 
San Joaquin) fall into that category, rather than the most extreme category (increases of 50% to 
90%). The counties that are predicted to have the largest percentage increase in annual degree-
days are: Madera, Merced, Sacramento, Placer, Nevada, Sutter and Yuba. In terms of 
precipitation, most counties are predicted to experience a smaller percentage decline (-10% or 
more). Importantly, it appears again the leading counties in terms of profits are predicted to 
suffer the least reduction in annual rainfall. 

Table 2 presents summary statistics about the financial activities of farms in California. These 
data are taken from the 1969–1974 and 1987–2002 Censuses of Agriculture. Averages are 
calculated separately for each year across the 58 counties of California. The top panel shows 
state totals, while the bottom panel reports county averages. The first row shows the total 
farmland acreage has been steadily declining over time, from 35.7 million acres to 27.6 million. 
Total profits (defined as revenues minus production expenditures) fluctuate over time with no 
clear trend, around an average of $4.7 billion (in 2006 dollars). Similar patterns are observed in 
the county-level averages: Profits were the highest in 1997, at $127 million and the lowest in 
1969 at $32 million, on average per county. In terms of profits per acre, the average over the 
census years is $160 dollar per acre farmed, with a peak of $271 in 1997. 

Finally, Table 3 reports averages for production and yields of the 15 largest value crops in 
California over the 1980–2005 period. For this analysis, greenhouse production was omitted as it 
is less clear how climate change will affect this type of production. The crops are listed 
alphabetically in the first row. Importantly, some of these crops are perennial (almonds, 
avocados, grapes, lemons, oranges, pistachios, and walnuts) and annuals (broccoli, hay, lettuce, 
strawberry, and tomatoes). We will investigate the possibility of differential impacts across 
annuals and perennials in future work. 
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Figure 3a. Predicted change in annual degree-days, percentage change in 2070–2099 relative to the 1950–2005 
baseline 
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Figure 3b. Predicted change in annual precipitation, percentage change in 2070–2099 relative to the 1950–2005 
baseline 
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Table 2. County-level summary statistics on farm revenues, expenditures, and profits, 1969–2002  

 
Notes: Averages are calculated for a balanced panel of 58 counties over 6 census years (1969, 1974, 1987, 1992, 1997, 2002).  
All dollar values are in 2006 constant dollars. 
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Table 3. County average yields and value of production for 15 of the largest value crops in California, 1980–2005 

 
Notes: Averages are calculated for a balanced panel of 58 counties over the years 1980–2005. All dollar values are in 2006  
constant dollars. 
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The first column reports the average number of counties producing each crop. The most 
geographically widely produced crop is hay, produced in 51 counties, while the least 
geographically covered crop is cotton, which is grown in 9 counties on average. The yield (in 
tons per acre planted) is next reported. Tomatoes and strawberries are the highest yielding 
crops, while almonds and pistachios are the lowest yielding. There is important heterogeneity 
across crops in yields, which range from 0.6 to 24.0. Next are total value of production (in 
millions of dollars) and dollars per acre planted. (These and all subsequent figures are reported 
in 2006 constant dollars, unless noted otherwise.) The dollar yields per acre also exhibit a wide 
range, from $500 per acre planted for hay to $27,000 for strawberries. Finally, the last column 
shows the state total value of production for each crop, averaged over the 1980–2005 period. 
During this period, the highest value crops are grapes (wine and non-wine), hay, lettuce, 
almonds, oranges, and cotton, with each exceeding a value of $1 billion. Below we evaluate how 
climate change will impact the value of annual production of each of these crops. 

5.0 Results 

5.1. Estimates 
This section reports our estimates of the economic impact of climate change on agricultural 
profits and yields. Before turning to these estimates, we begin with Figure 4a, which presents a 
simple graphical analysis of the relationship between profits per acre and weather—annual 
degree-days and precipitation. The figure plots the results from three separate regressions 
(Equation 1) for county-level profits per acre, all of which are weighted by total county-level 
agricultural acres. The line “OLS, Deciles” plots the predicted profit using ordinary least 
squares (OLS) parameter estimates and right-hand-side variables for deciles of the distribution 
of annual weather degree-days at the midpoint of each decile’s range. This regression also 
includes year-fixed effects and soil variables. The next line, labeled “FE, Deciles” corresponds to 
the same model, with the addition of county fixed effects (FE), which takes into account climate 
and other differences from one county to another. The final line, labeled “FE, Quadratic,” 
replaces degree-day decile indicators with a quadratic in degree-days and plots the conditional 
means at the midpoints of each decile’s range.  

There are a few important findings in this graph. First, in the “OLS, Deciles” line there is 
tremendous variation in profits per acre as it ranges from -$192 per acre to over $72 per acre. 
Notably, it is generally increasing throughout the range of the degree-days distribution. The 
addition of county fixed effects to the specification (the “FE, Deciles” line) greatly reduces the 
variation in profits per acre. The profits per acres on this line range from $10 to $100 per acre. 
We also observe that the modeling of degree-days with a quadratic provides a good 
approximation to the less parametric approach. Fourth, and most importantly, all models show 
that even relatively large increases in degree-days are unlikely to have negative effects on 
profits per acre (recall that the A2 scenario predicts increases of up to 1,000 annual degree-
days).  

One reason the OLS graph slopes upwards much more significantly is that differences in 
climate are only reflected in differences in weather–there are no climate variables or fixed 
effects. When fixed effects are introduced, these fixed effects capture climate differences. 
Different climates involve different agricultural practices, which reduce the effect of weather 
anomalies. This is seen in the FE graphs in Figure 4a. 
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Figure 4b repeats this analysis for annual precipitation. All lines in this case are downward-
sloping, indicating a negative relationship between profits per acre and annual precipitation, 
which possibly reflects our inadequate controls for water supplied by irrigation (even though 
the soil characteristics variables include the fraction of farmland that is irrigated in each county. 
After adjustment for the county fixed effects however, the response surfaces are relative flat 
above the sample mean of 50 centimeters of annual rainfall (to the right of the vertical line). 
Again, this analysis suggests that small reductions or increases in annual precipitations are 
unlikely to have dramatic effects on agricultural profits; furthermore, a decrease in precipitation 
is unlikely to decrease profits. 

Table 4 shows the basic estimation results with annual weather/climate variables, although 
results for only weather and climate independent variables are shown. Estimation results for 
models with seasonal weather are not shown. There are three basic annual weather/climate 
models, two variants of Equation 1 and one variant of Equation 2. What varies from one model 
to the next is indicated at the bottom of Table 4. Because of problems identifying climate effects 
separately from fixed effects, county fixed effects are omitted from estimates of Equation 2. 
Significance of individual parameters is not always strong, though covariance between 
parameter estimates generally leads to significance of the group of climate variables and 
significance of the group of weather variables. This will become clearer as we look at the 
significance of profit changes. 

Note from the results in column (3) that increases in expected or average degree days has a 
significantly positive effect on profits, whereas degree days 32°C or warmer do not, nor does 
precipitation. On the other hand, realizations of the weather have a different effect, reflecting 
the fact, for example, that a hot day when you are expecting a cool day is different from a hot 
day when you are expecting a hot day. Presumably, crops can be tailored to the local climate 
more easily than crops can be made resilient to unexpected weather deviations. Degree days 
32°C or warmer in terms of weather have a significantly negative effect on profit—actual hot 
weather reduces profit. 
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Figure 4a. Estimated relationship between annual degree-days (base 8°C–32°C) and profits per acre, 1987–2002 
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Figure 4b. Estimated relationship between annual precipitation and profits per acre, 1987–2002 
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Table 4. Estimation results for key independent variables, equations 1 and 2 with annual weather/climate (standard 
errors in parentheses)  

 
 
Note: Degree-Days 8-32 denotes Degree-Days 8°C–32°C and Degree-Days 32+ denotes Degree-Days 32°C+
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5.2. Future Climate Change 
Tables 5 to 7 present estimates of the impact of the A2 and B1 climate change scenarios on 
annual agricultural profits (Equation 3). These results are derived from the estimation of 
versions of Equations 1 and 2. 

Table 5a presents our first set of impact projections for aggregate agricultural profits. These 
projections are based on the A2 scenario and on the estimation of models nested in Equation 1. 
Namely, we consider models that control only for annual degree-days and precipitation, rather 
than their seasonal values, to which we return in a subsequent table. Given the relatively small 
estimating sample (343 county-year observations), this restriction helps preserve degrees of 
freedom and focus the analysis of a small set of explanatory variables. 

The first panel shows the projections over the period 2010–2039, the second panel reports the 
projections over the 2040-2069 period, and the last panel reports projections for the 2070–2099 
period. The first column of each panel reports estimates based on OLS estimation of Equation 1 
with linear controls for annual degree-days (both 8°C–32°C and 32°C+) and precipitations. 
Estimate in the second columns are based on models that include county fixed effects. In each 
column we can also decompose the impact into its component due to change in the distribution 
of daily temperatures and the distribution of precipitations. In addition, the standard errors 
associated with each point estimate are reported in parentheses. Other specification details are 
noted at the bottom of the table. 

Note from Table 5a that the impact of the annual degree-days depends dramatically on the 
inclusion or exclusion of county fixed effects. In general, in models with county fixed effects, 
degree-days are not significantly associated with change in agricultural profits, while they are 
in the OLS models (the one exception are the projections on the 2010–2039 horizon). This is 
consistent with the discussion of Figure 4a where we argued that climate is included in the fixed 
effect and thus including or excluding fixed effects makes a big difference when climate is not 
an explicit regression. 

Taken as a whole, the information in Table 5a reveals three keys points: (1) The impact of 
climate change on agricultural profits in California is likely to be positive, although the exact 
magnitude varies. In percentage term, the impacts range from 4.0% to 36.4%, with larger 
changes in later years. In absolute terms, the aggregate profits are projected to increase by 0.2 to 
2.2 billion of 2006 dollars. The entries in Table 5a also indicate the impacts are projected to grow 
over time: the long-run impacts (2070–2099) generally exceed the medium-run (2040–2069) and 
short-term (2010–2039) impacts. Second, across all specifications the impact of the reduction in 
annual precipitations on profits is positive and statistically significant, with impacts ranging 
from $168 million to $381 million. This somewhat counterintuitive result might reflect our 
inability to adequately control for the supply of water available to farmers (e.g., Schlenker, 
Hanemann, Fisher 2007), despite the fact that all our models include controls for the fraction of 
farmland in a county that is irrigated.  

 

Table 5b replicates 5a, but for the predictions scenario B1. Since the B1 scenario predicts smaller 
increases in temperature, and smaller reductions (or increases) in precipitations, the resulting 
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impacts on profits are smaller in magnitude than those reported in Table 5a. The long-term 
impacts range from 5.2% to 15.8% change in annual profits. 

Tables 6a and 6b present climate change projections derived from statistical models that are 
more general than those discussed so far. As before, the “a” table refers to scenario A2 and the 
“b” table to scenario B1. In both tables, we now break down the annual degree-days into 
seasonal degree-days (total degree-days during the winter, spring, summer, and fall). We do the 
same for annual precipitation. This leads to a less parsimonious statistical model (with fewer 
degrees of freedom), but one that is probably better-suited for California’s agriculture, as 
several crops are grown all year-round. 

In terms of the B1 scenario, Table 6b presents the mirror image of 6a, with the exception that the 
impacts are smaller in magnitude as was noted before. In this case, the range of long-term profit 
impacts, is -2.4% to 35.6%, approximately five times smaller than what was reported in Table 6a. 

Tables 7a and 7b are based on the estimation of models that derive from versions of Equation 2. 
This is our preferred model. The main difference is that models now include controls for 
realized weather in a given year, as well as our 30-year running average of the weather 
realizations, which we refer to as “climate.” The key point is that these “climate” variables 
provide a proxy measure for farmers’ expectations about the weather. However, the inclusion 
of these variables, which evolve slowly and smoothly, make it difficult to estimate the 
unrestricted version of Equation 2, because of degree of collinearity between the county fixed-
effects, the time fixed-effects, and the “climate” variables. As such, we omit county fixed-effects 
from Tables 7a and 7b and focus on OLS estimation only. In addition, we only report the 
models that control for annual degree-days and precipitations. As we showed above, the 
aggregate impacts are not significantly altered when we break down the weather variables in 
their seasonal values. 

The results in Table 7a lead to the same qualitative conclusion that climate change is not likely 
to lead to an important reduction in agricultural profits in California. The aggregate impacts are 
positive across all specifications in Table 7a. As expected, the magnitude of the impacts grows 
with the time horizon of the projection. Over the 2070–2099 period, the projected impact is +2.3 
billions of dollars, or 41%. In addition, the confidence intervals around the estimated impacts 
are bounded away from 0, so we can rule out zero of negative impacts. The positive impacts are 
mostly attributable to the increase in degree-days in the A2 scenario. While large in magnitude, 
the climate effects are generally statistically insignificant. 
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Table 5a. Predicted impacts for scenario A2: OLS and FE estimates of agricultural profits in California (million of 
2006 dollars); estimated equation 1, weather only 
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Table 5b. Predicted impacts for scenario B1: OLS and FE estimates of agricultural profits in California (million of 
2005 dollars); estimated equation 1, weather only 
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Table 6a. Predicted impacts for scenario A2: OLS and FE estimates of agricultural profits in California (million of 
2005 dollars); estimated equation 1, seasonal weather only 
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Table 6b. Predicted impacts for scenario B1: OLS and FE estimates of agricultural profits in California (million of 
2006 dollars); estimated equation 1, seasonal weather only 
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Table 7a. Predicted impacts for scenario A2: OLS estimates of agricultural profits in California (million of 2006 
dollars); estimated equation (2), annual weather and climate 
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Table 7b. Predicted impacts for scenario B1: OLS estimates of agricultural profits in California (million of 2006 
dollars); estimated equation 2, annual weather and climate 
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5.3. Specific Crops 
We have also explored the effect of predicted climate change on the value of crops produced in 
California. Based on the Census of Agriculture data for 1987–2002, crop sales represent about 
70% of total farm sales in California. Crops are important, but sales of livestock and dairy 
products are also important. 

Another motivation for examining individual crops yields is to assess the limitations of the 
profits approach we propose in the paper. Large declines in yields would suggest that the profit 
results may be biased (relative to the preferred long run measure) by short run price increases. 
Although farmers cannot switch crops in response to weather shocks, they are able to undertake 
some adaptations, although not to the same extent as it is possible in response to permanent 
climate change. 

The analysis is based on the 15 largest-grossing crops (perennials and annuals) in California. 
Summary statistics on these were displayed in Table 3. The analysis is based on the estimation 
of Equation 2, where the dependent variables are county-level value of production per acre 
planted, for each of the 15 crops. The regressions all include controls for soil characteristics and 
year fixed effects and are weighted by the square root of the number of acres planted in each 
crop. The independent variables of interest are the seasonal degree-days and precipitation, but 
in terms of realized weather and its long-run averages (climate). For the reasons discussed 
above, estimation is performed using OLS (i.e., excluding county fixed effects). 

The results are presented graphically in Figure 5, which shows the percentage impacts for each 
crop, associated with the prediction of CCSM3, scenario A2. Percentage impacts are computed 
by norming the predicted change in value of production for each crop by the historical average 
value of production for each of the crops. The figure reports the point estimates (the red square) 
and its 95% confidence interval (delimited by the horizontal bars). The main message of 
Figure 5 is that climate change will have a heterogeneous impact on value of production in 
California. For some crops, the value of production is projected to increase by as much as 20% 
(i.e., cotton, hay, lettuce), while for others (i.e., lemons, food grapes), the value of production is 
projected to decrease by 20% or more . 

Taken as a whole, the evidence in Figure 5 fails to deliver a statistically significant relationship 
between climate change and crop yields for most of the crops. As such, the small changes in 
output or quantities suggest that it is unlikely that the previous subsection’s finding that climate 
change will have a small effect on agricultural profits is due to short-run price increases. 

5.4. Caveats 
There are a number of caveats to this analysis and calculations. First, the analysis ignores 
extreme events (e.g., droughts and floods) or the variance of climate realizations, in addition to 
any effects on degree-days and precipitation. So it is uninformative about the economic impact 
of these events. Similarly, it is possible that climate change will disrupt local ecosystems and/or 
change soil quality. Both of these factors may affect agricultural productivity. Since annual 
fluctuations in climate are unlikely to have the same effect on ecosystems and soil quality as 
permanent changes, our estimates fail to account for these effects too.  
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Second, global climate change will likely affect agricultural production around the world, which 
will cause changes in relative prices. Although our estimates are based on annual fluctuations in 
weather and are adjusted for year fixed effects, we are not able to account fully for future price 
changes. 

Third, our analysis is conditional on the existing system of government programs that impact 
agricultural profits and land values by affecting farmers’ decisions about which crops to plant, 
the amount of land to use, and the level of production (Kirwan 2005). Our estimates would 
likely differ if they were estimated with an alternative set of subsidy policies in place.  

 
Notes: Results from estimation of Equation 2 separately for each of indicated crops. Weather and climate are annual 
data. Error bars reflect 95% confidence levels. 

Figure 5. Predicted impacts of climate change on annual value of crop production, 
scenario A2, 2070–2099 (percentage impacts relative to a 1980–2005 baseline) 
 
Finally, we discuss three issues with our approach that can cause it to yield and incorrect 
prediction of the damage associated with climate change. First, we emphasize that these 
projections are conditional on the current prices and availability of water for irrigation. In the 
likely event that these factors change over the next century, our approach is unlikely to 
correspond to the true future sequence of agricultural profits. In addition, elevated carbon 
dioxide (CO2) concentrations are known to increase the yield per planted acre for many plants 
(see e.g., Miglietta et al. 1998). Since higher CO2 concentrations are thought to be a primary 
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cause of climate change, it possible that carbon fertilization will lead to higher yields per acre, 
which in turn would affect agricultural profits, something not accounted for in our analysis. 
Finally, our representation of how weather and climate affect profits is admittedly simple, in 
part because of the limited data available to us for estimation.  

6.0 Conclusions 
The question posed in this paper is: what does the historic record tell us about how agriculture 
in California will be affected by climate change? Although there are limitations to our analysis 
that prevent us from being too specific in answering this question, there are two tentative 
conclusions. 

One conclusion is that climate change may in fact result in increased farm profits in the state, 
though obviously not for all farms. A second and related conclusion is that different crops will 
be affected very differently. Profits from table grapes, for instance, are expected to decline 
significantly, whereas profits from hay should increase, at least in percentage terms (of course, 
grapes generate more profit per acre than hay). 
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